If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+15x-26=0
a = 7; b = 15; c = -26;
Δ = b2-4ac
Δ = 152-4·7·(-26)
Δ = 953
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{953}}{2*7}=\frac{-15-\sqrt{953}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{953}}{2*7}=\frac{-15+\sqrt{953}}{14} $
| -23=-3+5x | | 21+5y=12y | | T=6s+4.21 | | 6+-2s=4 | | 1/8y+6=-10 | | -3(-2+6p)+5p=71 | | (3x+5)^2=121 | | x 0.6=9 0.5 | | 220=63-v | | 3x-2/6=4x+5/2= | | 3x-5(x-2)=-3+5x=-29 | | (8-y)(3y-2)=0 | | 1/2d+6=5 | | 7a-5=4a-26 | | 3x-2/6=4x+5/2 | | 5x2+15x−50=0 | | 6(x-3)+x=6x+3+15 | | 90=-16t^2+64+80 | | 6(x-3)+x=7x+5 | | 4x-8=3x-10 | | 6(x-3)+x=7x+2+1 | | 2y+7=-35 | | 16x-18=105+2x | | 3(x=1)=2(x+5) | | 1/x+2/x=3/x | | x/8+8.3=-4.8 | | 4=9/2(4y-2) | | 64=4(6k+3)+2k | | x^2-12+36=80 | | 9+2m=3m | | 9z+6=-39 | | 500-2m=290 |